Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.574
1.
Front Biosci (Landmark Ed) ; 29(4): 154, 2024 Apr 18.
Article En | MEDLINE | ID: mdl-38682210

BACKGROUND: Diabetic bladder dysfunction (DBD) is driven in part by inflammation which dysregulates prostaglandin release in the bladder. Precise inflammatory mechanisms responsible for such dysregulation have been elusive. Since prostaglandins impact bladder contractility, elucidating these mechanisms may yield potential therapeutic targets for DBD. In female Type 1 diabetic Akita mice, inflammation mediated by the nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasome is responsible for DBD. Here, we utilized female Akita mice crossbred with NLRP3 knock-out mice to determine how NLRP3-driven inflammation impacts prostaglandin release within the bladder and prostaglandin-mediated bladder contractions. METHODS: Akita mice were crossbred with NLRP3-⁣/- mice to yield four groups of non-diabetics and diabetics with and without the NLRP3 gene. Females were aged to 30 weeks when Akitas typically exhibit DBD. Urothelia and detrusors were stretched ex vivo to release prostaglandins. Prostaglandin E2 (PGE2) and prostaglandin F2α (PGF2α) were quantified using enzyme linked immunosorbent assays (ELISA). In separate samples, ex vivo contractile force to PGE2 and PGF2α +/- the prostaglandin F (FP) receptor antagonist, AL8810, was measured. FP receptor protein expression was determined via western blotting. RESULTS: Stretch-induced PGE2 release increases in urothelia but decreases in detrusors of diabetics. However, PGE2-mediated bladder contractions are not impacted. Conversely, diabetics show no changes in PGF2α release, but PGF2α-mediated contractions increase significantly. This is likely due to signaling through the FP receptors as FP receptor antagonism prevents this increase and diabetics demonstrate a four-fold increase in FP receptor proteins. Without NLRP3-mediated inflammation, changes in prostaglandin release, contractility, and receptor expression do not occur. CONCLUSION: NLRP3-dependent inflammation dysregulates prostaglandin release and prostaglandin-mediated bladder contractions in diabetic female Akita mice via FP receptor upregulation.


Diabetes Mellitus, Type 1 , Mice, Knockout , Muscle Contraction , NLR Family, Pyrin Domain-Containing 3 Protein , Receptors, Prostaglandin , Urinary Bladder , Animals , Female , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Urinary Bladder/metabolism , Urinary Bladder/physiopathology , Receptors, Prostaglandin/metabolism , Receptors, Prostaglandin/genetics , Diabetes Mellitus, Type 1/physiopathology , Diabetes Mellitus, Type 1/metabolism , Mice , Inflammation/metabolism , Inflammation/physiopathology , Mice, Inbred C57BL , Diabetes Mellitus, Experimental/physiopathology , Diabetes Mellitus, Experimental/metabolism
2.
Cell Rep ; 43(3): 113893, 2024 Mar 26.
Article En | MEDLINE | ID: mdl-38446662

Prostaglandin F2α (PGF2α) and thromboxane A2 (TXA2) are endogenous arachidonic acid metabolites, modulating diverse physiological processes including inflammation and cardiovascular homeostasis through activating PGF2α receptor (FP) and TXA2 receptor (TP). Ligands targeting FP and TP have demonstrated efficacy in treating conditions like glaucoma and cardiovascular diseases in humans, as well as reproductive-related diseases in animals. Here, we present five cryoelectron microscopy structures illustrating FP and TP in complex with Gq and bound to PGF2α (endogenous ligand), latanoprost acid (a clinical drug), and two other synthetic agonists. Combined with mutational and functional studies, these structures reveal not only structural features for the specific recognition of endogenous ligands and attainment of receptor selectivity of FP and TP but also the common mechanisms of receptor activation and Gq protein coupling. The findings may enrich our knowledge of ligand recognition and signal transduction of the prostanoid receptor family and facilitate rational ligand design toward these two receptors.


Receptors, Prostaglandin , Signal Transduction , Humans , Animals , Ligands , Cryoelectron Microscopy , Receptors, Prostaglandin/metabolism , Prostaglandins
3.
Circ Heart Fail ; 17(4): e011089, 2024 Apr.
Article En | MEDLINE | ID: mdl-38525608

BACKGROUND: Prostaglandin E2 acts through 4 G-protein-coupled receptors (EP1-EP4). We previously reported that activation of the EP3 receptor reduces cardiac contractility, and its expression increases after a myocardial infarction (MI), mediating the reduction in cardiac function. In contrast, cardiac overexpression of the EP4 receptor in MI substantially improves cardiac function. Moreover, we recently reported that mice overexpressing EP3 have heart failure under basal conditions and worsened cardiac function after MI. Thus, the deleterious effects of the prostaglandin E2 EP receptors in the heart are mediated via its EP3 receptor. We, therefore, hypothesized that cardiomyocyte-specific knockout (CM-EP3 KO) or antagonism of the EP3 receptor protects the heart after MI. METHODS: To test our hypothesis, we made the novel CM-EP3 KO mouse and subjected CM-EP3 KO or controls to sham or MI surgery for 2 weeks. In separate experiments, C57BL/6 mice were subjected to 2 weeks of MI and treated with either the EP3 antagonist L798 106 or vehicle starting 3 days post-MI. RESULTS: CM-EP3 KO significantly prevented a decline in cardiac function after MI compared with WT animals and prevented an increase in hypertrophy and fibrosis. Excitingly, mice treated with L798 106 3 days after MI had significantly better cardiac function compared with vehicle-treated mice. CONCLUSIONS: Altogether, these data suggest that EP3 may play a direct role in regulating cardiac function, and pharmaceutical targeting of the EP3 receptor may be a therapeutic option in the treatment of heart failure.


Heart Failure , Myocardial Infarction , Mice , Animals , Dinoprostone/metabolism , Dinoprostone/pharmacology , Receptors, Prostaglandin/genetics , Receptors, Prostaglandin/metabolism , Gene Deletion , Heart Failure/drug therapy , Heart Failure/genetics , Heart Failure/prevention & control , Mice, Inbred C57BL , Myocytes, Cardiac/metabolism , Receptors, Prostaglandin E, EP4 Subtype/genetics , Receptors, Prostaglandin E, EP4 Subtype/metabolism , Receptors, Prostaglandin E, EP3 Subtype/genetics , Receptors, Prostaglandin E, EP3 Subtype/metabolism
5.
Proc Natl Acad Sci U S A ; 120(30): e2216329120, 2023 07 25.
Article En | MEDLINE | ID: mdl-37478163

To accomplish concerted physiological reactions, nature has diversified functions of a single hormone at at least two primary levels: 1) Different receptors recognize the same hormone, and 2) different cellular effectors couple to the same hormone-receptor pair [R.P. Xiao, Sci STKE 2001, re15 (2001); L. Hein, J. D. Altman, B.K. Kobilka, Nature 402, 181-184 (1999); Y. Daaka, L. M. Luttrell, R. J. Lefkowitz, Nature 390, 88-91 (1997)]. Not only these questions lie in the heart of hormone actions and receptor signaling but also dissecting mechanisms underlying these questions could offer therapeutic routes for refractory diseases, such as kidney injury (KI) or X-linked nephrogenic diabetes insipidus (NDI). Here, we identified that Gs-biased signaling, but not Gi activation downstream of EP4, showed beneficial effects for both KI and NDI treatments. Notably, by solving Cryo-electron microscope (cryo-EM) structures of EP3-Gi, EP4-Gs, and EP4-Gi in complex with endogenous prostaglandin E2 (PGE2)or two synthetic agonists and comparing with PGE2-EP2-Gs structures, we found that unique primary sequences of prostaglandin E2 receptor (EP) receptors and distinct conformational states of the EP4 ligand pocket govern the Gs/Gi transducer coupling selectivity through different structural propagation paths, especially via TM6 and TM7, to generate selective cytoplasmic structural features. In particular, the orientation of the PGE2 ω-chain and two distinct pockets encompassing agonist L902688 of EP4 were differentiated by their Gs/Gi coupling ability. Further, we identified common and distinct features of cytoplasmic side of EP receptors for Gs/Gi coupling and provide a structural basis for selective and biased agonist design of EP4 with therapeutic potential.


Dinoprostone , Signal Transduction , Dinoprostone/metabolism , Signal Transduction/physiology , Receptors, Prostaglandin/metabolism , GTP-Binding Protein alpha Subunits, Gs/metabolism , Hormones , Receptors, Prostaglandin E, EP4 Subtype/metabolism , Receptors, Prostaglandin E, EP2 Subtype/metabolism , Receptors, Prostaglandin E, EP3 Subtype/metabolism
6.
Life Sci ; 313: 121277, 2023 Jan 15.
Article En | MEDLINE | ID: mdl-36521546

AIMS: Prostaglandin E2 (PGE2) is a lipid hormone that signals through 4 different G-protein coupled receptor subtypes which act to regulate key physiological processes. Our laboratory has previously reported that PGE2 through its EP3 receptor reduces cardiac contractility at the level of isolated cardiomyocytes and in the isolated working heart preparation. We therefore hypothesized that cardiomyocyte specific overexpression of the PGE2 EP3 receptor further decreases cardiac function in a mouse model of heart failure produced by myocardial infarction. MAIN METHODS: Our study tested this hypothesis using EP3 transgenic mice (EP3 TG), which overexpress the porcine analogue of human EP3 in the cardiomyocytes, and their wildtype (WT) littermates. Mice were analyzed 2 wks after myocardial infarction (MI) or sham operation by echocardiography, RT-PCR, immunohistochemistry, and histology. KEY FINDINGS: We found that the EP3 TG sham controls had a reduced ejection fraction, reduced fractional shortening, and an increased left ventricular dimension at systole and diastole compared to the WT sham controls. Moreover, there was a further reduction in the EP3 TG mice after myocardial infarction. Additionally, single-cell analysis of cardiomyocytes isolated from EP3 TG mice showed reduced contractility under basal conditions. Overexpression of EP3 significantly increased cardiac hypertrophy, interstitial collagen fraction, macrophage, and T-cell infiltration in the sham operated group. Interestingly, after MI, there were no changes in hypertrophy but there were changes in collagen fraction, and inflammatory cell infiltration. SIGNIFICANCE: Overexpression of EP3 reduces cardiac function under basal conditions and this is exacerbated after myocardial infarction.


Myocardial Infarction , Myocytes, Cardiac , Receptors, Prostaglandin E, EP3 Subtype , Animals , Humans , Mice , Cardiomegaly , Collagen/pharmacology , Dinoprostone/metabolism , Mice, Transgenic , Myocardial Infarction/genetics , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Receptors, Prostaglandin/genetics , Receptors, Prostaglandin/metabolism , Swine , Receptors, Prostaglandin E, EP3 Subtype/genetics , Receptors, Prostaglandin E, EP3 Subtype/metabolism
7.
Int J Pharm ; 625: 122132, 2022 Sep 25.
Article En | MEDLINE | ID: mdl-36028082

Prostaglandin E2 (PGE2) molecule and its receptors play an important role in the development of malignancies and metastases therefore PGE2 may play a crucial role in the diagnosis and a new therapeutic target in the field of radionuclide therapy of PGE2-positive tumors. PGE2 form complexes with RAMEB (randomly-methylated-beta-cyclodextrin) with high affinity therefore the aim of this present study was to synthesize a PGE2-specific DOTAGA-RAMEB, which can be labeled with diagnostic and therapeutic isotopes also and binds to PGE2-positive tumors. DOTAGA-RAMEB was labeled with 68Ga and 205/206Bi radionuclides and their radiochemical purity (RCP%), partition coefficient (logP values), and in vitro and in vivo stability were determined. For the assessment of the biological properties and the PGE2 specificity of [68Ga]Ga-DOTAGA-RAMEB and [205/206Bi]Bi-DOTAGA-RAMEB in vivo PET imaging and ex vivo biodistribution studies were performed using healthy control and PGE2-positive BxPC-3 tumor-bearing CB17 SCID mice. The RCP% of the newly synthesized [68Ga]Ga-DOTAGA-RAMEB and [205/206Bi]Bi-DOTAGA-RAMEB was higher than 98 %. In vivo studies showed that the tumor-to-background ratio of [68Ga]Ga-DOTAGA-RAMEB was 2.5 ± 0.2 as a result BxPC-3 tumors were clearly identified on PET images. Beside this the ex vivo biodistribution studies showed that the accumulation rate of [68Ga]Ga-DOTAGA-RAMEB and [205/206Bi]Bi-DOTAGA-RAMEB was similar in the PGE2-positive BxPC-3 tumors.


Neoplasms , beta-Cyclodextrins , Animals , Bismuth , Cell Line, Tumor , Dinoprostone/metabolism , Gallium Radioisotopes/chemistry , Mice , Mice, SCID , Neoplasms/drug therapy , Positron-Emission Tomography , Radioisotopes , Receptors, Prostaglandin/metabolism , Receptors, Prostaglandin/therapeutic use , Tissue Distribution , beta-Cyclodextrins/chemistry
8.
Int J Biochem Cell Biol ; 151: 106281, 2022 10.
Article En | MEDLINE | ID: mdl-35995387

Excessive mitochondrial fission in podocytes serves as a central hub for the pathogenesis of diabetic nephropathy (DN), and the thromboxane/prostaglandin receptor (TP receptor) plays a potential role in DN. However, regulation of the TP receptor during mitochondrial dynamics disorder in podocytes remains unknown. Here, we firstly reported novel mechanistic details of TP receptor effects on mitochondrial dynamics in podocytes under diabetic conditions. Expression of the TP receptor was significantly upregulated in podocytes under diabetic conditions both in vivo and in vitro. S18886 attenuated podocyte mitochondrial fission, glomerular injury and renal dysfunction in diabetic mice. Furthermore, inhibition of the TP receptor by both genetic and pharmacological methods dramatically reduced mitochondrial fission and attenuated podocyte injury induced by high glucose through regulating dynamin-related protein 1 (Drp1) phosphorylation and its subsequent translocation to mitochondria. In contrast, TP receptor overexpression and application of TP receptor agonist U46619 in these podocytes showed the opposite effect on mitochondrial fission and podocyte injury. Furthermore, treatment with Y27632, an inhibitor of Rho-associated kinase1 (ROCK1), significantly blunted more fragmented mitochondria and reduced podocyte injuries in podocytes with TP receptor overexpression or after U46619 treatment. Finally, pharmacological inhibition of Drp1 alleviated excessive mitochondrial fragmentation and podocyte damage in TP receptor overexpressing podocytes. Our data suggests that increased expression of the TP receptor can occur in a human cultured podocyte cell line and in podocytes derived from streptozotocin (STZ)-induced diabetic mice, which contributes to mitochondrial excessive fission and podocyte injury via ROCK1-Drp1 signaling.


Diabetes Mellitus, Experimental , Diabetic Nephropathies , Mitochondrial Diseases , Podocytes , 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/metabolism , 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology , 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/therapeutic use , Animals , Diabetes Mellitus, Experimental/pathology , Diabetic Nephropathies/pathology , Dynamins/metabolism , Glucose/metabolism , Glucose/pharmacology , Humans , Mice , Mitochondrial Diseases/metabolism , Mitochondrial Dynamics , Prostaglandins/metabolism , Prostaglandins/pharmacology , Prostaglandins/therapeutic use , Receptors, Prostaglandin/metabolism , Receptors, Prostaglandin/therapeutic use , Receptors, Thromboxane/metabolism , Receptors, Thromboxane/therapeutic use , Streptozocin , Thromboxanes/metabolism , Thromboxanes/pharmacology , Thromboxanes/therapeutic use , rho-Associated Kinases/metabolism
9.
Biol Pharm Bull ; 45(8): 992-997, 2022.
Article En | MEDLINE | ID: mdl-35908909

Prostanoids are a group of typical lipid mediators that are biosynthesized from arachidonic acid by the actions of cyclooxygenases and their subsequent terminal synthases. Prostanoids exert a wide variety of actions through their specific membrane receptors on target cells. In addition to their classical actions, including fever, pain, and inflammation, prostanoids have been shown to play pivotal roles in various biological processes, such as female reproduction and the maintenance of vascular and gut homeostasis. Moreover, recent research using mice deficient in each of the prostanoid receptors, or using agonists/antagonists specific for each receptor clarified novel actions of prostanoids that had long been unknown, and the mechanisms therein. In this review, we introduce recent advances in the fields of metabolic control by prostanoid receptors such as in adipocyte differentiation, lipolysis, and adipocyte browning in adipose tissues, and discuss the potential of prostanoid receptors as a treatment target for metabolic disorders.


Prostaglandins , Receptors, Prostaglandin , Adipocytes/metabolism , Animals , Female , Inflammation/metabolism , Lipolysis , Mice , Prostaglandins/physiology , Receptors, Prostaglandin/metabolism
10.
J Biol Chem ; 298(9): 102294, 2022 09.
Article En | MEDLINE | ID: mdl-35872018

Promiscuous G protein-coupled receptors (GPCRs) engage multiple Gα subtypes with different efficacies to propagate signals in cells. A mechanistic understanding of Gα selectivity by GPCRs is critical for therapeutic design, since signaling can be restrained by ligand-receptor complexes to preferentially engage specific G proteins. However, details of GPCR selectivity are unresolved. Here, we investigated cognate G protein selectivity using the prototypical promiscuous Gαq/11 and Gα12/13 coupling receptors, angiotensin II type I receptor (AT1R) and prostaglandin F2α receptor (FP), bioluminescence resonance energy transfer-based G protein and pathway-selective sensors, and G protein knockout cells. We determined that competition between G proteins for receptor binding occurred in a receptor- and G protein-specific manner for AT1R and FP but not for other receptors tested. In addition, we show that while Gα12/13 competes with Gαq/11 for AT1R coupling, the opposite occurs for FP, and Gαq-mediated signaling regulated G protein coupling only at AT1R. In cells, the functional modulation of biased ligands at FP and AT1R was contingent upon cognate Gα availability. The efficacy of AT1R-biased ligands, which poorly signal through Gαq/11, increased in the absence of Gα12/13. Finally, we show that a positive allosteric modulator of Gαq/11 signaling that also allosterically decreases FP-Gα12/13 coupling, lost its negative modulation in the absence of Gαq/11 coupling to FP. Together, our findings suggest that despite preferential binding of similar subsets of G proteins, GPCRs follow distinct selectivity rules, which may contribute to the regulation of ligand-mediated G protein bias of AT1R and FP.


GTP-Binding Protein alpha Subunits, G12-G13 , GTP-Binding Protein alpha Subunits, Gq-G11 , Receptor, Angiotensin, Type 1 , Receptors, Prostaglandin , GTP-Binding Protein alpha Subunits, G12-G13/metabolism , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , HEK293 Cells , Humans , Ligands , Receptor, Angiotensin, Type 1/metabolism , Receptors, Prostaglandin/metabolism
11.
Cells ; 11(11)2022 05 25.
Article En | MEDLINE | ID: mdl-35681442

Embryonic implantation and development are vital in early pregnancy and assisted reproduction. Circular RNAs (circRNAs) are involved in the two physiological processes and thus regulate animal reproduction. However, their specific regulatory functions and mechanisms remain unclear. Here, a novel circ0001470, originating from the porcine GRN gene, differentially expressed on day 18 versus day 32 of gestation in Meishan and Yorkshire pigs was screened. The circularization characteristic of circ0001470 was identified based on divergent primer amplification, Sanger sequencing, RNase digestion, and RNA nuclear-cytoplasmic fractionation. Functionally, circ0001470 can promote cell proliferation and cycle progression of endometrial epithelial cells (EECs) and also inhibit apoptosis of EECs using CCK-8 assays and flow cytometry analyses. Mechanistically, bioinformatics database prediction, luciferase screening, RNA immunoprecipitation (RIP), RNA-pull down, and FISH co-localization experiments revealed that the circ0001470 acted as a competing endogenous RNA (ceRNA) through sponging miR-140-3p to regulate downstream PTGFR expression. Moreover, in vivo assays revealed that mmu_circGRN promoted embryonic development by affecting the expression of PTGFR, which can activate the MAPK reproduction pathway and facilitate pregnancy maintenance. This study enriched our understanding of circRNAs in embryo implantation and development by deciding the fate of EECs.


MicroRNAs , RNA, Circular , Animals , Cell Line, Tumor , Cell Proliferation/genetics , Embryonic Development/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Circular/genetics , Receptors, Prostaglandin/metabolism , Swine
12.
J Mol Cell Cardiol ; 167: 97-105, 2022 06.
Article En | MEDLINE | ID: mdl-35367459

Cardiovascular diseases are the leading cause of death worldwide. A chronic inflammatory response is a common pathological alteration in diverse cardiovascular diseases. Prostaglandin (PG) D2, a key lipid mediator derived from arachidonic acid metabolism, promotes resolution of inflammation and regulated T cell function through its receptors. Accumulated evidence has shown that dysregulated PGD2 signaling is involved in the pathogenesis of cardiovascular diseases, including atherosclerosis, hypertension, pulmonary hypertension, abdominal aortic aneurysm, and myocardial ischemia. Here, we summarized the recent progresses on PGD2 in cardiovascular homeostasis and discussed potential therapeutic translation by targeting PGD2 signaling.


Cardiovascular Diseases , Receptors, Prostaglandin , Homeostasis , Humans , Inflammation , Prostaglandin D2/metabolism , Prostaglandins , Receptors, Immunologic/metabolism , Receptors, Prostaglandin/metabolism
13.
Hypertension ; 79(6): 1203-1215, 2022 06.
Article En | MEDLINE | ID: mdl-35354317

BACKGROUND: Vascular smooth muscle cell (VSMC) phenotype transition plays an essential role in vascular remodeling. PGD2 (Prostaglandin D2) is involved in cardiovascular inflammation. In this study, we aimed to investigates the role of DP1 (PGD2 receptor 1) on VSMC phenotype transition in vascular remodeling after Ang II (angiotensin II) infusion in mice. METHODS: VSMC-specific DP1 knockout mice and DP1flox/flox mice were infused with Ang II for 28 days and systolic blood pressure was measured by noninvasive tail-cuff system. The arterial samples were applied to an unbiased proteome analysis. DP1f/f Myh11 (myosin heavy chain 11) CREERT2 R26mTmG/+ mice were generated for VSMC lineage tracing. Multiple genetic and pharmacological approaches were used to investigate DP1-mediated signaling in phenotypic transition of VSMCs in response to Ang II administration. RESULTS: DP1 knockout promoted vascular media thickness and increased systolic blood pressure after Ang II infusion by impairing Epac (exchange protein directly activated by cAMP)-1-mediated Rap-1 (Ras-related protein 1) activation. The DP1 agonist facilitated the interaction of myocardin-related transcription factor A and G-actin, which subsequently inhibited the VSMC transition to myofibroblasts through the suppression of RhoA (Ras homolog family member A)/ROCK-1 (Rho associated coiled-coil containing protein kinase 1) activity. Moreover, Epac-1 overexpression by lentivirus blocked the progression of vascular fibrosis in DP1 deficient mice in response to Ang II infusion. CONCLUSIONS: Our finding revealed a protective role of DP1 in VSMC switch to myofibroblasts by impairing the phosphorylation of MRTF (myocardin-related transcription factor)-A by ROCK-1 through Epac-1/Rap-1/RhoA pathway and thus inhibited the expression of collagen I, fibronectin, ED-A (extra domain A) fibronectin, and vinculin. Thus, DP1 activation has therapeutic potential for vascular fibrosis in hypertension.


Angiotensin II , Hypertension , Receptors, Immunologic , Receptors, Prostaglandin , Angiotensin II/metabolism , Angiotensin II/pharmacology , Animals , Cells, Cultured , Fibronectins/metabolism , Fibrosis , Guanine Nucleotide Exchange Factors/metabolism , Hypertension/metabolism , Mice , Mice, Knockout , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Myofibroblasts/metabolism , Receptors, Immunologic/metabolism , Receptors, Prostaglandin/metabolism , Transcription Factors/metabolism , Vascular Remodeling/genetics
14.
Oxid Med Cell Longev ; 2022: 2908261, 2022.
Article En | MEDLINE | ID: mdl-35126810

Senescence in vascular smooth muscle cells (VSMCs) is involved in vascular remodeling of aged mice. ProstaglandinF2α- (PGF2α-) FP receptor plays a critical role in cardiovascular diseases (CVDs), hypertension, and cardiac fibrosis. However, its role in senescence-induced arteriosclerosis is yet to be fully elucidated. In this study, we found that FP receptor expression increased in aged mouse aortas and senescence VSMCs. FP receptor gene silencing can ameliorate vascular aging and inhibit oxidative stress, thereby reducing the expression of PAI-1, inhibiting the activation of MMPs, and ultimately improving the excessive deposition of ECM and delaying the process of vascular fibrosis. FP receptor could promote VSMC senescence by upregulated Src/PAI-1 signal pathway, and inhibited FP receptor/Src/PAI-1 pathway could ameliorate VSMCs aging in vitro, evidenced by the decrease of senescence-related proteins P16, P21, P53, and GLB1 expressions. These results suggested that FP receptor is a promoter of vascular aging, by inducing cellular aging, oxidative stress, and vascular remodeling via Src and PAI-1 upregulation.


Cellular Senescence , Plasminogen Activator Inhibitor 1/metabolism , Receptors, Prostaglandin/metabolism , Signal Transduction , Vascular Remodeling , src-Family Kinases/metabolism , Animals , Aorta/metabolism , Aorta/pathology , Collagen/genetics , Collagen/metabolism , Male , Mice , Mice, Inbred C57BL , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/metabolism , Nitric Oxide/metabolism , Oxidative Stress/genetics , Plasminogen Activator Inhibitor 1/genetics , RNA Interference , RNA, Small Interfering/metabolism , Rats , Receptors, Prostaglandin/antagonists & inhibitors , Receptors, Prostaglandin/genetics , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Up-Regulation , src-Family Kinases/genetics
15.
Br J Cancer ; 126(4): 586-597, 2022 03.
Article En | MEDLINE | ID: mdl-34750492

BACKGROUND: Despite intense research, the prognosis for patients with advanced colorectal cancer (CRC) remains poor. The prostaglandin D2 receptors DP1 and DP2 are explored here as potential therapeutic targets for advanced CRC. METHODS: A CRC cohort was analysed to determine whether DP1 and DP2 receptor expression correlates with patient survival. Four colon cancer cell lines and a zebrafish metastasis model were used to explore how DP1/DP2 receptor expression correlates with CRC progression. RESULTS: Analysis of the clinical CRC cohort revealed high DP2 expression in tumour tissue, whereas DP1 expression was low. High DP2 expression negatively correlated with overall survival. Other pathological indicators, such as TNM stage and metastasis, positively correlated with DP2 but not DP1 expression. In accordance, the in vitro results showed high DP2 expression in four CC-cell lines, but only one expressed DP1. DP2 stimulation resulted in increased proliferation, p-ERK1/2 and VEGF expression/secretion. DP2-stimulated cells exhibited increased migration in the zebrafish metastasis model. CONCLUSION: Our results support DP2 receptor expression and signalling as a therapeutic target in CRC progression based on its expression in CRC tissue correlating with poor patient survival and that it triggers proliferation, p-ERK1/2 and VEGF expression and release and increased metastatic activity in CC-cells.


Colorectal Neoplasms/pathology , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism , Receptors, Prostaglandin/genetics , Receptors, Prostaglandin/metabolism , Up-Regulation , Vascular Endothelial Growth Factor A/metabolism , Animals , Caco-2 Cells , Cell Line, Tumor , Cell Movement , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Disease Progression , Female , Gene Expression Regulation, Neoplastic , HCT116 Cells , HT29 Cells , Humans , Male , Neoplasm Metastasis , Neoplasm Staging , Neoplasm Transplantation , Survival Analysis , Zebrafish
16.
Int Immunopharmacol ; 102: 108348, 2022 Jan.
Article En | MEDLINE | ID: mdl-34920958

PURPOSE: Acute respiratory distress syndrome (ARDS) is characterized by uncontrollable inflammation. Cyclooxygenase-2(COX-2) and its metabolite prostaglandins are known to promote the inflammatory resolution of ARDS. Recently, a newly discovered endogenous lipid mediator, Protectin DX (PDX), was also shown to mediate the resolution of inflammation. However, the regulatory of PDX on the pro-resolving COX-2 in ARDS remains unknown. MATERIAL AND METHODS: PDX (5 µg/kg) was injected into rats intravenously 12 h after the lipopolysaccharide (LPS, 3 mg/kg) challenge. Primary rat lung fibroblasts were incubated with LPS (1 µg/ml) and/or PDX (100 nM). Lung pathological changes examined using H&E staining. Protein levels of COX-2, PGDS and PGES were evaluated using western blot. Inflammatory cytokines were tested by qPCR, and the concentration of prostaglandins measured by using ELISA. RESULTS: Our study revealed that, COX-2 and L-PGDS has biphasic activation characteristics that LPS could induce induced by LPS both in vivo and in vitro.. The secondary peak of COX-2, L-PGDS-PGD2 promoted the inflammatory resolution in ARDS model with the DP1 receptor being activated and PDX up-regulated the inflammatory resolutionvia enhancing the secondary peak of COX-2/L-PGDS-PGD2 and activating the DP1 receptor. CONCLUSION: PDX promoted the resolution of inflammation of ARDS model via enhancing the expression of secondary peak of COX-2/L-PGDS-PGD2 and activating the DP1 receptor. PDX shows promising therapeutic potential in the clinical management of ARDS.


Anti-Inflammatory Agents/therapeutic use , Docosahexaenoic Acids/therapeutic use , Respiratory Distress Syndrome/drug therapy , Animals , Anti-Inflammatory Agents/pharmacology , Cells, Cultured , Cyclooxygenase 2/metabolism , Docosahexaenoic Acids/pharmacology , Fibroblasts/drug effects , Fibroblasts/metabolism , Intramolecular Oxidoreductases/metabolism , Lipocalins/metabolism , Lipopolysaccharides/pharmacology , Lung/drug effects , Lung/metabolism , Male , Prostaglandin D2/metabolism , Rats, Sprague-Dawley , Receptors, Prostaglandin/metabolism , Respiratory Distress Syndrome/metabolism
17.
Cancer Res ; 82(6): 949-965, 2022 03 15.
Article En | MEDLINE | ID: mdl-34949672

Because of profound effects observed in carcinogenesis, prostaglandins (PG), prostaglandin-endoperoxide synthases, and PG receptors are implicated in cancer development and progression. Understanding the molecular mechanisms of PG actions has potential clinical relevance for cancer prevention and therapy. This review focuses on the current status of PG signaling pathways in modulating cancer progression and aims to provide insights into the mechanistic actions of PGs and their receptors in influencing tumor progression. We also examine several small molecules identified as having anticancer activity that target prostaglandin receptors. The literature suggests that targeting PG pathways could provide opportunities for cancer prevention and therapy.


Neoplasms , Prostaglandins , Humans , Neoplasms/prevention & control , Prostaglandin-Endoperoxide Synthases/metabolism , Prostaglandins/metabolism , Receptors, Prostaglandin/metabolism , Signal Transduction
18.
Respir Res ; 22(1): 262, 2021 Oct 07.
Article En | MEDLINE | ID: mdl-34620168

BACKGROUND: Prostaglandin D2 (PGD2) signaling via prostaglandin D2 receptor 2 (DP2) contributes to atopic and non-atopic asthma. Inhibiting DP2 has shown therapeutic benefit in certain subsets of asthma patients, improving eosinophilic airway inflammation. PGD2 metabolites prolong the inflammatory response in asthmatic patients via DP2 signaling. The role of PGD2 metabolites on eosinophil and ILC2 activity is not fully understood. METHODS: Eosinophils and ILC2s were isolated from peripheral blood of atopic asthmatic patients. Eosinophil shape change, ILC2 migration and IL-5/IL-13 cytokine secretion were measured after stimulation with seven PGD2 metabolites in presence or absence of the selective DP2 antagonist fevipiprant. RESULTS: Selected metabolites induced eosinophil shape change with similar nanomolar potencies except for 9α,11ß-PGF2. Maximal values in forward scatter of eosinophils were comparable between metabolites. ILC2s migrated dose-dependently in the presence of selected metabolites except for 9α,11ß-PGF2 with EC50 values ranging from 17.4 to 91.7 nM. Compared to PGD2, the absolute cell migration was enhanced in the presence of Δ12-PGD2, 15-deoxy-Δ12,14-PGD2, PGJ2, Δ12-PGJ2 and 15-deoxy-Δ12,14-PGJ2. ILC2 cytokine production was dose dependent as well but with an average sixfold reduced potency compared to cell migration (IL-5 range 108.1 to 526.9 nM, IL-13 range: 125.2 to 788.3 nM). Compared to PGD2, the absolute cytokine secretion was reduced in the presence of most metabolites. Fevipiprant dose-dependently inhibited eosinophil shape change, ILC2 migration and ILC2 cytokine secretion with (sub)-nanomolar potencies. CONCLUSION: Prostaglandin D2 metabolites initiate ILC2 migration and IL-5 and IL-13 cytokine secretion in a DP2 dependent manner. Our data indicate that metabolites may be important for in vivo eosinophil activation and ILC2 migration and to a lesser extent for ILC2 cytokine secretion.


Asthma/drug therapy , Eosinophils/drug effects , Lymphocytes/drug effects , Prostaglandin D2/pharmacology , Receptors, Immunologic/agonists , Receptors, Prostaglandin/agonists , Adolescent , Adult , Aged , Asthma/immunology , Asthma/metabolism , Cell Movement/drug effects , Cell Shape/drug effects , Cells, Cultured , Eosinophils/immunology , Eosinophils/metabolism , Female , Humans , Indoleacetic Acids/pharmacology , Interleukin-13/metabolism , Interleukin-5/metabolism , Lymphocytes/immunology , Lymphocytes/metabolism , Male , Middle Aged , Prostaglandin Antagonists/pharmacology , Prostaglandin D2/analogs & derivatives , Pyridines/pharmacology , Receptors, Immunologic/metabolism , Receptors, Prostaglandin/metabolism , Signal Transduction , Young Adult
19.
Life Sci ; 286: 120073, 2021 Dec 01.
Article En | MEDLINE | ID: mdl-34688694

AIMS: Thromboxane (TxA2) is synthesized from arachidonic acid (AA) via thromboxane synthase (TxS) enzyme and induces vasoconstriction via TP receptor. Our aim is to compare the effects of aspirin, TxS inhibitor and TP receptor antagonist on vascular reactivity of bypass grafts (saphenous vein and internal mammary artery). MAIN METHODS: Using isolated organ bath, saphenous vein and internal mammary artery preparations were incubated with TP receptor antagonist, TxS inhibitor, aspirin, IP or EP4 receptor antagonist. Then prostaglandin (PG)E2, PGF2α, phenylephrine and AA were administered in concentration-dependent manner. The expression of prostanoid receptor and PGI2 synthase (PGIS) enzyme was determined by Western Blot. KEY FINDINGS: TP receptor antagonist inhibited the contraction induced by PGE2, PGF2α, and AA but not that induced by phenylephrine in both types of vessels. Aspirin increased phenylephrine-induced contraction only in internal mammary artery and decreased AA-induced contraction in saphenous vein. TxS inhibitor decreased both PGE2 and AA-induced contraction in both types of vessels. This decrease was reversed by co-incubation of TxS inhibitor and IP/EP4 receptor antagonists. The expressions of EP3 receptor and PGIS enzyme were greater in internal mammary artery compared to saphenous vein while IP and TP receptors expressed at similar levels. SIGNIFICANCE: TP receptor antagonist and TxS inhibitor are more effective to reduce contraction induced by different spasmogens in comparison to aspirin. Our results suggest that TP receptor antagonist and TxS inhibitor might have an advantage over aspirin due to their preventive effect on increased vascular reactivity observed in post-operative period of coronary artery bypass grafting.


Mammary Arteries/drug effects , Saphenous Vein/drug effects , Arachidonic Acid/metabolism , Aspirin/pharmacology , Benzofurans/pharmacology , Carbazoles/pharmacology , Enzyme Inhibitors/pharmacology , Female , Humans , Male , Mammary Arteries/metabolism , Muscle, Smooth, Vascular/metabolism , Phenylephrine/pharmacology , Receptors, Prostaglandin/metabolism , Receptors, Thromboxane/antagonists & inhibitors , Receptors, Thromboxane/drug effects , Receptors, Thromboxane/metabolism , Saphenous Vein/metabolism , Sulfonamides/pharmacology , Thromboxane A2/pharmacology , Thromboxane-A Synthase/antagonists & inhibitors , Thromboxane-A Synthase/drug effects , Thromboxane-A Synthase/metabolism , Thromboxanes/antagonists & inhibitors , Thromboxanes/metabolism , Vasoconstriction/drug effects
20.
FASEB J ; 35(9): e21877, 2021 09.
Article En | MEDLINE | ID: mdl-34449098

Although commonly thought to produce prostacyclin (prostaglandin I2 ; PGI2 ) that evokes vasodilatation and protects vessels from the development of diseases, the endothelial cyclooxygenase (COX)-mediated metabolism has also been found to release substance(s) called endothelium-derived contracting factor(s) (EDCF) that causes endothelium-dependent contraction and implicates in endothelial dysfunction of disease conditions. Various mechanisms have been proposed for the process; however, the major endothelial COX metabolite PGI2 , which has been classically considered to activate the I prostanoid receptor (IP) that mediates vasodilatation and opposes the effects of thromboxane (Tx) A2 produced by COX in platelets, emerges as a major EDCF in health and disease conditions. Our recent studies from genetically altered mice further suggest that vasomotor reactions to PGI2 are collectively modulated by IP, the vasoconstrictor Tx-prostanoid receptor (TP; the prototype receptor of TxA2 ) and E prostanoid receptor-3 (EP3; a vasoconstrictor receptor of PGE2 ) although with differences in potency and efficacy; a contraction to PGI2 reflects activities of TP and/or EP3 outweighing that of the concurrently activated IP. Here, we discuss the history of endothelium-dependent contraction, evidences that support the above hypothesis, proposed mechanisms for the varied reactions to endothelial PGI2 synthesis as well as the relation of its dilator activity to the effect of another NO-independent vasodilator mechanism, the endothelium-derived hyperpolarizing factor. Also, we address the possible pathological and therapeutic implications as well as questions remaining to be resolved or limitations of our above findings obtained from genetically altered mouse models.


Endothelium, Vascular/metabolism , Epoprostenol/metabolism , Vasoconstriction/physiology , Animals , Endothelium, Vascular/drug effects , Humans , Mice , Prostaglandins/metabolism , Receptors, Prostaglandin/metabolism , Receptors, Thromboxane/metabolism , Thromboxanes/metabolism , Vasoconstriction/drug effects , Vasoconstrictor Agents/pharmacology , Vasomotor System/drug effects , Vasomotor System/metabolism
...